Department of
Biological Chemistry & Molecular Pharmacology

Gerhard Wagner

617-432- 3213
617-432- 4383
Room C1-112
240 Longwood Ave.
Boston, MA 02215
Research Areas

Our research is concerned with structures of proteins and protein complexes. We use NMR spectroscopy, computational tools and small molecule inhibitors to study function and cellular significance of protein interactions.

The primary structural focus is on how eukaryotic translation initiation regulates the fate of cells. In particular, we are interested in the interaction of the cap-binding proteins eIF4E with the mRNA cap, the scaffold protein eIF4G, and the regulatory 4E-BPs, and how these interactions are related to cell transformation and apoptosis. To address this, we have identified small-molecule inhibitors of the eIF4E/eIF4G interaction and found that these may have anti-tumor activity. We are also working on other factors involved in eukaryotic translation initiation, such as eIF2, eIF2B, eIF5B, eIF5 and eIF4A, and small-molecule inhibitors.

We also seek to understand mechanisms of T-cell function from structural studies. This includes the human T-cell adhesion glycoprotein CD2, the abTCR and proteins that are associated with these complexes or are involved in T-cell signaling. These include CD3, proteins that bind cytoplasmic tails of T-cell receptor proteins (Nck), and the downstream signaling proteins calcineurin and NFAT.

How transcriptional activators interact with co-activators from the ARC family is another theme pursued in collaboration with the group of Anders Näär (MGH). We are determining structures of complexes and search for inhibitors of such interactions.

We are interested in protein-protein interactions in apoptosis. These include molecules from the Bcl-2 family and the mitochondrial membrane protein VDAC. We are also interested in identifying small-molecule inhibitors of anti-apoptotic proteins. We want to characterize their interaction using experimental and computational tools and investigate their effect on cellular function.

In collaboration with the Walsh laboratory we work on non-ribosomal peptide synthetases and try to understand mechanisms by which building blocks of natural products are selected, processed and cyclyzed.


F. Yang, B. W. Vought, J. S. Satterlee, Z.-Y. J. Sun, J. L. Watts, A. K. Walker, R. DeBeaumont, R. M. Saito, S. G. Hyberts, S. Yang, C. Macol, L. Iyer, R. Tjian, S. van den Heuvel, A. C. Hart, G. Wagner, A. M. Näär: An ARC/Mediator subunit required for SREBP gene activation and regulation of cholesterol and fatty acid homeostasis, Nature, 442, 700-704 (2006).

N. J. Moerke, H. Aktas, H. Chen, S. Cantel, Mikhail Y. Reibarkh, A. Fahmy, J. D. Gross, A. Degterev, J. Yuan, M. Chorev, J. A. Halperin, G. Wagner: Small Molecule Inhibition of the Interaction Between the Translation Initiation Factors eIF4E and eIF4G. Cell, 128, 257-267 (2007).

D. P. Frueh, H. Arthanari, A. Koglin, D. Vosburg, A. E. Bennett, C. T. Walsh, and G. Wagner, Dynamic thiolation-thioesterase structure of a non-ribosomal peptide synthetase. Nature, 454, 903-906 (2008.

S. Hiller, R. G. Garces, T. J. Malia, V. Y. Orekhov, M. Colombini, G. Wagner: Solution structure of the integral human membrane protein VDAC-1 in detergent micelles, Science 321, 1206- 1210 (2008).

J. K. Thakur, H. Arthanari, F. Yang, S.-J. Pan, X. Fan, J. Breger, D. P. Frueh, K. Gulshan, D. Li, E. Mylonakis, K. Struhl, W. S. Moye-Rowley, B. P. Cormack, G. Wagner, A. M. Näär: A Nuclear Receptor-Like Pathway Regulating Multidrug Resistance in Fungi. Nature, 452, 604-609 (2008).

A. Marintchev, K. A. Edmonds, B. Marintcheva, E. Hendrickson, M. Oberer, C. Suzuki, B. Herdy, N. Sonenberg, G. Wagner: The topology of the human eIF4A/4G/4H complex and the regulation of helicase activity, Cell, 136, 447-460. (2009),